Умскул учебник стремится стать лучше! Если вы наткнулись на ошибку или неточность в нашем материале - просто сообщите нам, мы будем благодарны!
Математика

Основные элементарные функции

6.5.2022
5841

На этой странице вы узнаете:

  • За что отвечают коэффициенты в записи линейной функции?
  • Как пронумерованы четверти на координатной плоскости?
  • Чем отличается график функции квадратного корня от графика квадратичной функции и почему?

Линейная функция

Любую функцию можно изобразить на графике (рисунке) и наглядно определить многие её свойства. Этим пользуются люди, составляя графики движения транспорта, посещения соцсетей или просмотра видеороликов на канале.  

Вспомним, что функция – это зависимость одной переменной от другой, а график функции – это представление данной зависимости на координатной плоскости. 

С помощью графика функции можно изучать поведение функции: возрастает или убывает, имеет ли нули, на каких промежутках значения положительные, а на каких отрицательные, наибольшее и наименьшее значение, является ли симметричной относительно OY.

Теперь давайте рассмотрим основные элементарные функции.

Что же такое линейная функция? 

Линейная функция – это функция вида y=kx+b, где k и b – известные числа, графиком которой является прямая.

y = kx + b, где
k – коэффициент
b – свободный член
x – переменная 

С линейной функцией мы встречаемся, когда оплачиваем проезд  в общественном транспорте.

Коэффициент и переменная определяют стоимость билета в зависимости от дальности поездки. Свободным членом может выступать доплата за комфортное место или за поезд-экспресс.

Пункт назначенияСтанция 200 кмСтанция 300 кмСтанция 400 км
Цена поездки в обычном вагоне (kx)500 руб.750 руб.1000 руб.
Цена за вагон “Люкс” (kx + b)750 руб.1000 руб.1250 руб.

Рассмотрим пример такой функции и ее график:
y = 2x + 3

Составим таблицу значений.

Теперь отметим найденные точки на координатной плоскости и проведём через них прямую.

Полученный нами график является графиком данной линейной функции.

Также можно составить уравнение линейной функции самостоятельно при наличии графика.

За что отвечают коэффициенты в записи линейной функции?

Коэффициент b – это длина отрезка по оси OY, на который происходит сдвиг от начала координат (может быть отрицательным, если пересечение графика с осью Y в точке с отрицательным значением).

Коэффициент k – это угол наклона прямой, он равен отношению разностей координат двух произвольных точек.

На графике найдем сначала коэффициент b , после определим координаты двух произвольных точек прямой и вычислим коэффициент k.

Подставим найденные коэффициенты в формулу линейной функции и получим
\(y = \frac{1}{2}x + 2\)

Свойства линейной функции:

  1. Область определения: D(y) = (-∞; +∞)
  2. Область значений функции: E(y) = (-∞; +∞)
  3. Наименьшего и наибольшего значения не существует.
  4. Непериодическая.
  5. Возрастает при  k > 0, убывает при k < 0.

Квадратичная функция

Квадратичная функция – это функция вида y = ax2, где a – известное число и a ≠ 0, графиком которой является парабола.

y = ax2, где 
a – известное число 
a ≠ 0
x – переменная

Для примера построим график функции y = 2x2

Параболой можно описать полет мяча в баскетбольную корзину.

Какой вид имеет парабола в зависимости от коэффициента a ?

При a > 0 – ветви параболы вверх

При a < 0 – ветви параболы вниз

Сдвиг параболы по оси Y

y = ax2 + c

При c > 0 – сдвиг параболы вверх 

При c < 0 – сдвиг параболы вниз 

Сдвиг параболы по оси X

y = a(x — n)2

При n > 0 – сдвиг параболы вправо 

При n < 0 – сдвиг параболы влево 

Свойства квадратичной функции:

  1. Область определения: D(y) = (-∞; +∞)
  2. Область значений функции: E(y) = [0; +∞)
  3. При a > 0 – наименьшее значение y = 0.
    При a < 0 – наибольшее значение y=0.
  4. Непериодическая.
  5. На (-∞; 0] – убывает при  a > 0 и возрастает при a < 0.
    На [0; +∞) — убывает при a < 0 и возрастает при a > 0.
  6. Нуль функции x=0.
  7. Четная (симметричная относительно OY).

Функция обратной пропорциональности

Функция обратной пропорциональности – это функция вида y = \(\frac{k}{x}\), где k – известное число и k ≠ 0, графиком которой является гипербола.

\(y = \frac{k}{x}\), где 
k – известное число 
k ≠ 0
x – переменная

Рассмотрим пример такой функции \(y = \frac{2}{x}\)

Как коэффициент k влияет на расположение гиперболы?

Как пронумерованы четверти на координатной плоскости?

Вспомним четверти плоскостей. Они идут против часовой стрелки начиная с четверти, где и x, и y — положительные.

Гипербола при k > 0 – в первой и третьей плоскостях

Гипербола при k< 0 – во второй и четвертой плоскостях

Гипербола может также двигаться по оси X или по оси Y

Движение графика по оси Y

\(y = \frac{k}{x} + n\) при k> 0

При n < 0, сдвиг вниз
При n > 0, сдвиг вверх

По графику выше можно сделать вывод, что n = 3.

Движение графика по оси X

\(y = \frac{k}{x + c}\) при k> 0

При c < 0, сдвиг вправо
При c > 0, сдвиг влево

По графику выше можно сделать вывод, что c = 3.

Свойства функции обратной пропорциональности:

  1. Область определения: D(y) = (-∞; 0) U (0; +∞)
  2. Область значений функции: E(y) = (-∞; 0) U (0; +∞)
  3. Наименьшего и наибольшего значений не существует.
  4. Непериодическая.
  5. При k > 0 убывает на (-∞;0) и (0; +∞).
    При k < 0 возрастает на (-∞; 0) и (0; +∞).
  6. Нулей нет.
  7. Нечетная.

Где же в реальной жизни мы можем встретить эту функцию? 

Самый простой пример – движение автомобиля: чем выше его скорость, тем меньше времени потребуется, чтобы преодолеть одно и то же расстояние.

Функция квадратного корня

Функция квадратного корня – это функция вида \(y = \sqrt{x}\), где x ≥ 0 .

\(y = \sqrt{x}\), где
x – переменная
x ≥ 0

В жизни такая функция часто используется для определения стороны квадрата при известной площади. Например: при проектировании дома или разбиения участка земли на квадраты.

Рассмотрим график такой функции.

Чем отличается график функции квадратного корня от графика квадратичной функции и почему?

По графику квадратного корня уже видно, что это половина параболы, изображенной вдоль оси х. А график квадратичной функции — это целая парабола, изображенная вдоль оси y.
Так как корень всегда положительный, у функции квадратного корня \(y = \sqrt{x}\) , всегда y ≥ 0.  А значит не будет части параболы, где y < 0. 
Если возвести обе части функции квадратного корня в квадрат, то получим y2 = x. Получившаяся функция будет уже квадратичной функцией относительно y, следовательно, будет строиться относительно х.

Какие бывают сдвиги функции квадратного корня?

Сдвиг по оси Y

\(y = \sqrt{x} + n\)

При n < 0, сдвиг вниз
При n > 0, сдвиг вверх

По графику выше можно утверждать, что n = -2.

Сдвиг по оси X

\(y = \sqrt{x + c}\)

При c < 0, сдвиг вправо
При c > 0, сдвиг влево

Сделаем вывод, что для рисунка выше c = -2.

Свойства функции квадратного корня:

  1. Область определения: D(y) = [0; +∞)
  2. Область значений функции: E(y) = [0; +∞)
  3. Наименьшее значение при y = 0.
  4. Непериодическая.
  5. Возрастает на всей области определения.
  6. Нуль функции x = 0.

Фактчек

  • Линейная функции y = kx + b.
  • Квадратичная функции y = ax2.
  • Функция обратной пропорциональности \(y = \frac{k}{x}\).
  • Функция квадратного корня \(y = \sqrt{x}\).

Термины

Элементарная функция – это функция вида y = f(x) , где f(x) – это формула, содержащая конечное число арифметических операций. 

Парабола – это незамкнутая линия, точки на которой равноудалены от оси ординат.

Проверь себя

Задание 1.
Определите какая из функций является линейной

  1. \(y = 2x^2 + \frac{1}{2}\)
  2. \(y = \sqrt{x + 2}\)
  3. \(y = \frac{1}{2}x + 3\)
  4. \(y = \frac{1}{x — 2}\)

Задание 2.
Определите какая из функций является квадратичной

  1. y = 4(x — 1)2
  2. y = 2x + 11
  3. \(y = \frac{x}{2} + 1\)
  4. \(y = \sqrt{x} + 3\)

Задание 3.
Определите какая функция является обратной пропорциональностью

  1. \(y = \frac{x}{2} + 5\)
  2. \(y = \frac{1}{x + 2}\)
  3. \(y = \sqrt{x + 1}\)
  4. y = x2

Задание 4.
Определите какая функция является функцией квадратного корня

  1. y = x2
  2. \(y = \sqrt{x — 1} — 4\)
  3. \(y = 6x + \frac{1}{3}\)
  4. y = 2x2 + 3

Задание 5.
В какую сторону будет сдвиг у параболы y = (x + 4)2?

  1. Вправо
  2. Вниз
  3. Вверх
  4. Влево

Ответы: 1. – 3; 2. – 1; 3. – 2; 4. – 2; 5. – 4

Понравилась статья? Оцени:
Читайте также:

Читать статьи — хорошо, а готовиться к экзаменам
в самой крупной онлайн-школе — еще эффективнее.

50 000
Количество
учеников
1510
Количество
стобальников
>15000
Сдали на 90+
баллов