Исследование функции с помощью производной
На этой странице вы узнаете
- Кто всегда протянет руку помощи в определении производной?
- Что такое сложная функция и зачем тут матрешка?
- Как никогда не ошибаться при решении задач с производными?
Теория теорией, а дифференцировать хочется всегда. Эта статья посвящена практике нахождения производных.
Производные основных функций
Должно быть, вы уже слышали о производной и даже пробовали взять её мозговым штурмом. При отрицательном ответе вам обязательно нужно прокатиться на американских горках в нашей статье «Производная». В ней рассмотрели основные понятия производной.
Главный вопрос этой статьи: как ее находить? Для этого существуют свои формулы и правила, которых необходимо придерживаться для правильного решения заданий.
Ниже приведена таблица с формулами для нахождения производных основных функций. Применяя эти формулы, можно найти производную почти любой функции.
Не пугайтесь, если вам покажется, что их много: это основные формулы, с помощью которых можно решить большинство задач.
1 | C’ = 0, C = const |
2 | \((x^n)’ = n * x^{n — 1}, x > 0\) |
3 | \((a^x)’ = a^x * ln(a), a > 0, a \neq 1\) |
4 | \((e^x)’ = e^x\) |
5 | \((log_{a}x)’ = \frac{1}{x * ln(a)}, x > 0, a > 0, a \neq 1\) |
6 | \((ln(x))’ = \frac{1}{x}, x > 0\) |
7 | \((\sqrt{x})’ = \frac{1}{2\sqrt{x}}, x > 0\) |
8 | (sin(x))’ = cos(x) |
9 | (cos(x))’ = -sin(x) |
10 | \((tg(x))’ = \frac{1}{cos^{2}x}, x \neq \frac{\pi}{2} + \pi n, n \in Z\) |
11 | \((ctg(x))’ = -\frac{1}{sin^{2}x}, x \neq \pi n, n \in Z\) |
Смотреть на формулы и учить их — это круто, прямо ощущаем себя великими учеными. Что может быть круче этого? Только применять их на практике. Рассмотрим несколько примеров нахождения производной.
Пример 1. Найдите производную функции f(x) = 5.
Решение: 5 — это число, то есть константа. Тогда, пользуясь первой формулой в таблице, получаем:
f'(x) = 5′ = 0.
Ответ: 0
Пример 2. Найдите производную функции \(f(x) = x^4\)
Решение: В этом случае необходимо воспользоваться второй формулой из таблицы.
\(f'(x) = (x^4)’ = 4 * x^{4-1} = 4 * x^3\)
Ответ: \(4x^3\)
Пример 3. Найдите производную функции \(f(x) = e^x\)
Решение: В этом случае необходимо воспользоваться четвертой формулой из таблицы.
\(f'(x) = (e^x)’ = e^x\)
Ответ: \(e^x\)
Правила дифференцирования
С полной уверенностью можем сказать, что вам встречались сложные функции. Даже намного сложнее, чем те, которые приведены в таблицах. Там и сумма, и произведение, и формула в формуле. Одним словом: ужас! Как брать производную, если перед функцией стоит коэффициент, или в функцию включено несколько разных выражений? На этот случай существуют правила дифференцирования.
Кто всегда протянет руку помощи в определении производной? В сложных функциях невозможно пользоваться только формулами для нахождения производной. Если функция — усложнена коэффициентом, — представлена в виде суммы, произведения или частного — или является сложной функцией, то для выбора правильной производной необходимо воспользоваться правилами дифференцирования. Они играют роль супергероев от мира производных. Рассмотрим их внимательнее. |
1. Коэффициент можно вынести за знак производной.
(k * f(x))’ = k * (f(x))’
Например, необходимо взять производную у функции f(x) = 6sin(x). Тогда, пользуясь правилом дифференцирования и таблицей, получаем ответ 6cos(x).
2. Производная суммы (разности) равняется сумме (разности) производных.
\((f(x) \pm g(x))’ = f'(x) \pm g'(x)\)
Найдем производную \(f(x) = 4x^5 — \sqrt{x} + cos(x)\).
\(f'(x) = (4x^5 — \sqrt{x} + cos(x))’ = (4x^5)’ — (\sqrt{x})’ + (cos(x))’ = 4 * 5 * x^{5 — 1} — \frac{1}{2\sqrt{x}} — sin(x)\)
\(f'(x) = 20x^4 — \frac{1}{2\sqrt{x}} — sin(x). \)
3. Производная произведения.
(f(x) * g(x))’ = f'(x) * g(x) + f(x) * g'(x)
Для примера возьмем производную функции f(x) = x2 * ln(x)
f'(x) = (x2 * ln(x))’ = (x2)’ * ln(x) + x2 * (ln(x))’
\(f'(x) = 2x * ln(x) + x^2 * \frac{1}{x} = 2x * ln(x) + x\)
4. Производная частного.
\((\frac{f(x)}{g(x)})’ = \frac{f'(x) * g(x) — f(x) * g'(x)}{g^{2}(x)}\)
Возьмем производную функции \(f(x) = \frac{e^x}{3x}\)
\(f'(x) = \frac{(e^x)’ * 3x — ex * (3x)’}{(3x)^2} = \frac{e^x * 3x — e^x * 3}{9x^2} = \frac{3e^x * (x-1)}{9x^2} = \frac{e^x * (x-1)}{3x^2}\)
5. Производная сложной функции.
Сложная функция — это функция, внутри которой есть другая функция.
Что такое сложная функция и зачем тут матрешка? Давайте представим матрешку: в одну большую куклу складывается куколка поменьше, а в нее еще меньше и так далее. Точно так же и с функцией: “внутри” одной функции может лежать другая функция. Например, у нас есть две функции: \(\sqrt{x}\) и cos(x). А теперь попробуем поместить корень в функцию с косинусом, и получим \(cos(\sqrt{x})\). Это и будет сложная функция. |
Чтобы найти производную сложной функции, необходимо найти производную “внутренней” функции и умножить ее на производную “внешней” функции.
(f(g(x))’ = g'(x) * f'(g(x))
Найдем производную уже рассмотренной функции \(f(x) = cos(\sqrt{x})\).
\(f'(x) = (cos(\sqrt{x}))’ = (\sqrt{x})’ * (cos(\sqrt{x}))’ = \frac{1}{2\sqrt{x}} * (-sin(\sqrt{x})) = -\frac{sin(\sqrt{x})}{2\sqrt{x}}\)
Исследование функции с помощью производной
В задании нам может быть дана только функция без ее графика. Что делать в таком случае, если нам нужно найти, например, отрезки возрастания, точки экстремума, наибольшее или наименьшее значение функции? Не во всех случаях получится построить график, да и это займет достаточно большое количество времени, которое и без того ограничено на экзамене.
В этом случае мы можем проанализировать поведение функции с помощью производной.
Исследуем функцию f(x) = (x — 4)2(x + 11) + 4.
Cначала возьмем производную от этой функции:
f'(x) = ((x — 4)2(x + 11))‘ + 4′ = ((x — 4)2(x + 11))’ = ((x — 4)2)'(x + 11) + (x — 4)2(x + 11)’
f'(x) = 2(x — 4)(x + 11) + (x — 4)2 * 1 = (x — 4)(2(x + 11) + (x — 4)) = (x — 4)(3x + 18)
Любое исследование функции с помощью производной начинается именно с дифференцирования функции.
Теперь рассмотрим алгоритм нахождения точек минимума и максимума:
1 шаг. Нужно найти производную функции. 2 шаг. Найденную производную необходимо приравнять к 0 и решить полученное уравнение. 3 шаг. Расставить корни полученного уравнения на числовой прямой. 4 шаг. Определяем знаки производной на промежутках. Для этого необходимо подставить любое значение с выбранного промежутка в производную функции. 5 шаг. Определить, какие точки будут точками минимума (в них знак меняется с минуса на плюс), а какие — точками максимума (знак меняется с плюса на минус). |
Найдем точки минимума и максимума в нашей функции. Поскольку производную мы уже взяли, можно сразу перейти ко второму шагу:
(x — 4)(3x + 18) = 0
x = 4, x = -6.
Полученные значения х расставляем на числовой прямой:
Теперь определим знаки на промежутках слева направо.
1. Возьмем точку -10 и подставим ее в производную функции:
(-10 — 4)(3 * (-10) + 18) = (-14) * (-12) = 168. Производная на этом промежутке будет положительной.
2. Возьмем точку 0 и подставим ее в производную функции:
(0 — 4)(3 * 0 + 18) = (-4) * 18 = -72. Производная на этом промежутке будет отрицательной.
3. Возьмем точку 5 и подставим ее в производную функции:
(5 — 4)(3 * 5 + 18) = 33. Производная на этом промежутке будет положительной.
Расставим полученные знаки на прямой:
Остался последний пятый шаг. В точке -6 производная меняет знак с плюса на минус, значит, это точка максимума. В точке 4 производная меняет знак с минуса на плюс, значит, это точка минимума.
Важно! Если в задании встречается формулировка “Найдите точку минимума (максимума) функции”, то необходимо пользоваться именно этим алгоритмом. |
Но это не все выводы, которые уже можно сделать о функции. Вспомним, что функция возрастает, когда производная положительна, а убывает, когда производная отрицательна. Поскольку мы уже определили знаки производной, то смело можем сделать вывод, что на промежутках до -6 и после 4 функция будет возрастать, а на промежутке от -6 до 4 — убывать.
Однако могут встретиться задания, в которых необходимо найти наибольшее или наименьшее значение функции на определенном интервале.
Для выполнения таких заданий существует следующий алгоритм нахождения наибольшего и наименьшего значения функции.
Шаг 1. Найти производную функции. Шаг 2. Найти точки минимума и максимума функции. Шаг 3. Определить, какие из точек минимума и максимума принадлежат заданному интервалу. Шаг 4. Найти значение функции в отобранных в предыдущем шаге точках, а также в точках, которые являются границами заданного интервала. Для этого необходимо подставить точки в функцию (не в производную от функции). |
Для примера найдем наибольшее значение функции f(x) = (x — 4)2(x + 11) + 4 на отрезке [-10; 0].
Первые два шага мы уже выполнили, когда рассматривали алгоритм нахождения точек минимума и максимума. Из них отрезку [-10; 0] принадлежит х = -6 — точка максимума.
Теперь определим значение функции в трех точках:
f(-10) = (-10 — 4)2(-10 + 11) + 4 = 196 + 4 = 200
f(-6) = (-6 — 4)2(-6 + 11) + 4 = 500 + 4 = 504
f(0) = (0 — 4)2(0 + 11) + 4 = 176 + 4 = 180
Наибольшее из полученных значений — это 504. Это и будет ответ.
Как никогда не ошибаться при решении задач с производными? Может возникнуть вопрос, почему важно проверять значение функции и на границах отрезка? В заданиях ЕГЭ очень часто встречаются случаи, когда нужно найти наибольшее значение, и в интервале лежит точка максимума, или когда нужно найти наименьшее значение функции и в интервале лежит точка минимума. Логично будет проверить только экстремумы, поскольку в них, скорее всего, достигается наибольшее или наименьшее значение. Однако стоит вспомнить, что мы не видим график функции и не можем с точностью определить, что в экстремуме достигается нужное нам значение. С помощью экстремумов мы можем описать поведение функции: где она возрастает, а где убывает. Но можно столкнуться с графиком, на котором граничная точка будет лежать выше или ниже точки экстремума. Тогда наибольшее или наименьшее значение будет достигаться именно в ней. Пример на картинке (красными линиями обозначены границы отрезка). |
Подведем итог.
Как можно исследовать функцию с помощью производной?
С помощью производной можно с точностью сказать, на каких участках функция будет возрастать и убывать, сколько точек максимума и минимума у нее есть, какое наибольшее или наименьшее значение принимает функция на заданном участке.
Фактчек
- Для нахождения производной необходимо пользоваться специальными формулами для производной. С их помощью можно найти производную любой из основных функций.
- Если функция усложнена коэффициентом, является сложной или представлена в виде суммы, произведения или частного, то необходимо пользоваться правилами дифференцирования. Они помогут правильно найти производную.
- Сложная функция — это функция, внутри которой есть другая функция.
- С помощью производной можно исследовать функцию, а именно найти точки минимума и максимума, определить, на каких участках функция возрастает и убывает, найти наибольшее и наименьшее значение функции на заданном отрезке.
Проверь себя
Задание 1.
Чему будет равна производная f(x) = 3?
- 3;
- 1;
- 0;
- Производную этой функции невозможно найти.
Задание 2.
Чему будет равна производная f(x) = 5x2?
- 10x;
- 10x2;
- 5x2;
- 2x.
Задание 3.
Чему будет равна производная f(x) = 13x + 5 + x3?
- 18 + 3x2;
- 13 + 3x2;
- 18;
- 3x2.
Задание 4.
Чему будет равна производная f(x) = ln(x)?
- x
- \(\frac{1}{x}\)
- \(\frac{1}{2\sqrt{x}}\)
- ex
Задание 5.
Чему будет равна производная f(x) = tg(x)?
- \(\frac{1}{cos^{2}(x)}\)
- \(-\frac{1}{sin^{2}(x)}\)
- \(-\frac{1}{cos^{2}(x)}\)
- \(\frac{1}{sin^{2}(x)}\)
Ответы: 1. — 3 2. — 1 3. — 2 4. — 2 5. — 1